Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 313, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548860

RESUMO

In mammalian societies, dominance hierarchies translate into inequalities in health, reproductive performance and survival. DNA methylation is thought to mediate the effects of social status on gene expression and phenotypic outcomes, yet a study of social status-specific DNA methylation profiles in different age classes in a wild social mammal is missing. We tested for social status signatures in DNA methylation profiles in wild female spotted hyenas (Crocuta crocuta), cubs and adults, using non-invasively collected gut epithelium samples. In spotted hyena clans, female social status influences access to resources, foraging behavior, health, reproductive performance and survival. We identified 149 differentially methylated regions between 42 high- and low-ranking female spotted hyenas (cubs and adults). Differentially methylated genes were associated with energy conversion, immune function, glutamate receptor signalling and ion transport. Our results provide evidence that socio-environmental inequalities are reflected at the molecular level in cubs and adults in a wild social mammal.


Assuntos
Hyaenidae , Animais , Feminino , Hyaenidae/genética , Status Social , Predomínio Social , Epigênese Genética
2.
Life (Basel) ; 12(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743950

RESUMO

Free-ranging cheetahs (Acinonyx jubatus) are generally healthy, whereas cheetahs under human care, such as those in zoological gardens, suffer from ill-defined infectious and degenerative pathologies. These differences are only partially explained by husbandry management programs because both groups share low genetic diversity. However, mounting evidence suggests that physiological differences between populations in different environments can be tracked down to differences in epigenetic signatures. Here, we identified differentially methylated regions (DMRs) between free-ranging cheetahs and conspecifics in zoological gardens and prospect putative links to pathways relevant to immunity, energy balance and homeostasis. Comparing epigenomic DNA methylation profiles obtained from peripheral blood mononuclear cells (PBMCs) from eight free-ranging female cheetahs from Namibia and seven female cheetahs living in zoological gardens within Europe, we identified DMRs of which 22 were hypermethylated and 23 hypomethylated. Hypermethylated regions in cheetahs under human care were located in the promoter region of a gene involved in host-pathogen interactions (KLC1) and in an intron of a transcription factor relevant for the development of pancreatic ß-cells, liver, and kidney (GLIS3). The most canonical mechanism of DNA methylation in promoter regions is assumed to repress gene transcription. Taken together, this could indicate that hypermethylation at the promoter region of KLC1 is involved in the reduced immunity in cheetahs under human care. This approach can be generalized to characterize DNA methylation profiles in larger cheetah populations under human care with a more granular longitudinal data collection, which, in the future, could be used to monitor the early onset of pathologies, and ultimately translate into the development of biomarkers with prophylactic and/or therapeutic potential.

3.
Mol Biol Evol ; 38(9): 3884-3897, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426844

RESUMO

During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage.


Assuntos
Adaptação Biológica , Evolução Biológica , Fluxo Gênico , Variação Genética , Hyaenidae/genética , Animais , Comportamento Alimentar , Genoma , Masculino , Densidade Demográfica
4.
Proc Natl Acad Sci U S A ; 117(51): 32499-32508, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277437

RESUMO

Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.


Assuntos
Evolução Biológica , Spalax/genética , Simpatria , Adaptação Biológica , Animais , Variações do Número de Cópias de DNA , Epigênese Genética , Evolução Molecular , Fluxo Gênico , Variação Genética , Genética Populacional , Genoma , Israel , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Spalax/fisiologia
5.
Curr Zool ; 66(3): 307-319, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32440291

RESUMO

Social epigenomics is a new field of research that studies how the social environment shapes the epigenome and how in turn the epigenome modulates behavior. We focus on describing known gene-environment interactions (GEIs) and epigenetic mechanisms in different mammalian social systems. To illustrate how epigenetic mechanisms integrate GEIs, we highlight examples where epigenetic mechanisms are associated with social behaviors and with their maintenance through neuroendocrine, locomotor, and metabolic responses. We discuss future research trajectories and open questions for the emerging field of social epigenomics in nonmodel and naturally occurring social systems. Finally, we outline the technological advances that aid the study of epigenetic mechanisms in the establishment of GEIs and vice versa.

6.
Mamm Genome ; 31(5-6): 157-169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285146

RESUMO

External temperature change has been shown to modify epigenetic patterns, such as DNA methylation, which regulates gene expression. DNA methylation is heritable, and as such provides a mechanism to convey environmental information to subsequent generations. Studies on epigenetic response to temperature increase are still scarce in wild mammals, even more so studies that compare tissue-specific epigenetic responses. Here, we aim to address differential epigenetic responses on a gene and gene pathway level in two organs, liver and testis. We chose these organs, because the liver is the main metabolic and thermoregulation organ, and epigenetic modifications in testis are potentially transmitted to the F2 generation. We focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to an ambient temperature increase of 10 °C, and investigated differential methylated regions of sons sired before and after the paternal exposure using Reduced Representation Bisulfite Sequencing. We detected both a highly tissue-specific epigenetic response, reflected in genes involved in organ-specific metabolic pathways, and a more general regulation of single genes epigenetically modified in both organs. We conclude that genomes are context-specifically differentially epigenetically regulated in response to temperature increase. These findings emphasize the epigenetic relevance in cell differentiation, which is essential for the specific function(s) of complex organs, and is represented in a diverse molecular regulation of genes and gene pathways. The results also emphasize the paternal contribution to adaptive processes.


Assuntos
Epigênese Genética , Genoma , Padrões de Herança , Exposição Paterna , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Metilação de DNA , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Cobaias , Temperatura Alta , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Especificidade de Órgãos , Mapeamento de Interação de Proteínas , Espermatozoides/citologia , Testículo/citologia
7.
Mitochondrial DNA B Resour ; 5(3): 2147-2148, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33457761

RESUMO

Cavia aperea is a wild guinea pig found throughout South America. The previously published mitochondrial sequence for C. aperea was highly divergent from the C. porcellus sequence and contained stop codons within open reading frames. Here we resequenced the mitochondrial genomes of C. aperea and C. porcellus. Both sequences reflect gene organization typical for mammalian mitochondrial DNA. Our C. aperea mtDNA sequence shows that all of the open reading frames are intact, but confirms the strikingly low level of sequence identity (92.7%) with the closely related C. porcellus mtDNA.

8.
Genes (Basel) ; 10(3)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875862

RESUMO

The question as to how early life experiences are stored on a molecular level and affect traits later in life is highly topical in ecology, medicine, and epigenetics. In this study, we use a fish model to investigate whether DNA methylation mediates early life experiences and predetermines a territorial male reproductive phenotype. In fish, adult reproductive phenotypes frequently depend on previous life experiences and are often associated with distinct morphological traits. DNA methylation is an epigenetic mechanism which is both sensitive to environmental conditions and stably inherited across cell divisions. We therefore investigate early life predisposition in the round goby Neogobius melanostomus by growth back-calculations and then study DNA methylation by MBD-Seq in the brain region controlling vertebrate reproductive behavior, the hypothalamus. We find a link between the territorial reproductive phenotype and high growth rates in the first year of life. However, hypothalamic DNA methylation patterns reflect the current behavioral status independently of early life experiences. Together, our data suggest a non-predetermination scenario in the round goby, in which indeterminate males progress to a non-territorial status in the spawning season, and in which some males then assume a specialized territorial phenotype if current conditions are favorable.


Assuntos
Metilação de DNA , Hipotálamo/química , Perciformes/fisiologia , Territorialidade , Animais , Comportamento Animal/fisiologia , Epigênese Genética , Masculino , Perciformes/genética , Locos de Características Quantitativas , Reprodução , Análise de Sequência de DNA/veterinária
9.
Genes (Basel) ; 10(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583460

RESUMO

Epigenetic modifications are a mechanism conveying environmental information to subsequent generations via parental germ lines. Research on epigenetic responses to environmental changes in wild mammals has been widely neglected, as well as studies that compare responses to changes in different environmental factors. Here, we focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to either diet (~40% less protein) or temperature increase (10 °C increased temperature). Because both experiments focused on the liver as the main metabolic and thermoregulation organ, we were able to decipher if epigenetic changes differed in response to different environmental changes. Reduced representation bisulfite sequencing (RRBS) revealed differentially methylated regions (DMRs) in annotated genomic regions in sons sired before (control) and after the fathers' treatments. We detected both a highly specific epigenetic response dependent on the environmental factor that had changed that was reflected in genes involved in specific metabolic pathways, and a more general response to changes in outer stimuli reflected by epigenetic modifications in a small subset of genes shared between both responses. Our results indicated that fathers prepared their offspring for specific environmental changes by paternally inherited epigenetic modifications, suggesting a strong paternal contribution to adaptive processes.

10.
Ecol Evol ; 6(9): 2657-66, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27066228

RESUMO

Epigenetic mechanisms convey environmental information through generations and can regulate gene expression. Epigenetic studies in wild mammals are rare, but enable understanding adaptation processes as they may occur in nature. In most wild mammal species, males are the dispersing sex and thus often have to cope with differing habitats and thermal changes more rapidly than the often philopatric females. As temperature is a major environmental selection factor, we investigated whether genetically heterogeneous Wild guinea pig (Cavia aperea) males adapt epigenetically to an increase in temperature, whether that response will be transmitted to the next generation(s), and whether it regulates mRNA expression. Five (F0) adult male guinea pigs were exposed to an increased ambient temperature for 2 months, corresponding to the duration of the species' spermatogenesis. To study the effect of heat, we focused on the main thermoregulatory organ, the liver. We analyzed CpG-methylation changes of male offspring (F1) sired before and after the fathers' heat treatment (as has recently been described in Weyrich et al. [Mol. Ecol., 2015]). Transcription analysis was performed for the three genes with the highest number of differentially methylated changes detected: the thermoregulation gene Signal Transducer and Activator of Transcription 3 (Stat3), the proteolytic peptidase gene Cathepsin Z (Ctsz), and Sirtuin 6 (Sirt6) with function in epigenetic regulation. Stat3 gene expression was significantly reduced (P < 0.05), which indicated a close link between CpG-methylation and expression levels for this gene. The two other genes did not show gene expression changes. Our results indicate the presence of a paternal transgenerational epigenetic effect. Quick adaptation to climatic changes may become increasingly relevant for the survival of wildlife species as global temperatures are rising.

11.
Mol Ecol ; 25(8): 1729-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26686986

RESUMO

Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons' livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an 'immediate' and 'heritable' epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species.


Assuntos
Epigênese Genética , Cobaias/genética , Temperatura Alta , Fígado/metabolismo , Testículo/metabolismo , Animais , Regulação da Temperatura Corporal , Metilação de DNA , Masculino , Análise de Sequência de DNA , Espermatogênese
12.
BMC Genomics ; 15: 1036, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25429894

RESUMO

BACKGROUND: DNA methylation is a heritable mechanism that acts in response to environmental changes, lifestyle and diseases by influencing gene expression in eukaryotes. Epigenetic studies of wild organisms are mandatory to understand their role in e.g. adaptational processes in the great variety of ecological niches. However, strategies to address those questions on a methylome scale are widely missing. In this study we present such a strategy and describe a whole genome sequence and methylome analysis of the wild guinea pig. RESULTS: We generated a full Wild guinea pig (Cavia aperea) genome sequence with enhanced coverage of methylated regions, benefiting from the available sequence of the domesticated relative Cavia porcellus. This new genome sequence was then used as reference to map the sequence reads of bisulfite treated Wild guinea pig sequencing libraries to investigate DNA-methylation patterns at nucleotide-specific level, by using our here described method, named 'DNA-enrichment-bisulfite-sequencing' (MEBS). The results achieved using MEBS matched those of standard methods in other mammalian model species. The technique is cost efficient, and incorporates both methylation enrichment results and a nucleotide-specific resolution even without a whole genome sequence available. Thus MEBS can be easily applied to extend methylation enrichment studies to a nucleotide-specific level. CONCLUSIONS: The approach is suited to study methylomes of not yet sequenced mammals at single nucleotide resolution. The strategy is transferable to other mammalian species by applying the nuclear genome sequence of a close relative. It is therefore of interest for studies on a variety of wild species trying to answer evolutionary, adaptational, ecological or medical questions by epigenetic mechanisms.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Genoma , Animais , Animais Selvagens/genética , Sequência de Bases , Cobaias , Sequenciamento de Nucleotídeos em Larga Escala
13.
BMC Dev Biol ; 13: 7, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23433182

RESUMO

BACKGROUND: In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. RESULTS: We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. CONCLUSION: Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.


Assuntos
Drosophila/metabolismo , Células Germinativas , Histonas/metabolismo , Animais , Diploide , Compensação de Dosagem (Genética) , Drosophila/genética , Masculino , Meiose , Especificidade da Espécie , Testículo/citologia , Cromossomo X
14.
BMC Genomics ; 14: 16, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23324137

RESUMO

BACKGROUND: This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G(3) populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G(3)-animals. RESULTS: We found that individuals with larger muscles have significantly lower total body fat (r = -0.28) and IMF (r = -0.64), and in females, a lower WHC (r = -0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = -0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (-1.15%), and lower IMF in M. longissimus (-0.13%) and M. quadriceps (-0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (-0.55 g) was identified on chromosome 16 at 94 Mb (86-94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. CONCLUSION: The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock.


Assuntos
Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Tecido Adiposo/química , Animais , Bovinos , Cromossomos/genética , Feminino , Genótipo , Glicogênio/química , Glicogênio/metabolismo , Masculino , Camundongos , Modelos Animais , Músculo Esquelético/química , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Suínos , Água/metabolismo
15.
Curr Protoc Mol Biol ; Chapter 2: Unit 2.13.1-3, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22470062

RESUMO

Semen consists of spermatozoa and the seminal fluid, also called seminal plasma. This fluid is important for the survival of the spermatozoa, but may decrease the purity and thus quality of the DNA due to its fructose and protein content. In this protocol, spermatozoa are washed with ethanol to remove the fluid. The spermatozoa themselves are protected by a membrane rich in disulfide bonds, which impede cell lysis and thus hamper DNA isolation. To break disulfide bonds a strong antioxidant, such as dithiothreitol (DDT), is necessary. Similar to other protocols for DNA isolation from other mammalian tissues, proteinase K and SDS are included in the lysis reaction. After lysis of the sperm cells, the DNA is precipitated using ethanol and then redissolved in TE-buffer or ddH(2)O.


Assuntos
DNA/isolamento & purificação , Mamíferos , Espermatozoides/química , Animais , Humanos , Masculino
16.
Biochem Biophys Res Commun ; 392(2): 145-9, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20059981

RESUMO

Quantitative real-time RT-PCR (qRT-PCR) is a sensitive technique for gene expression analysis. A critical factor for creating reliable data in relative quantification is the normalization of the expression data of genes of interest. Therefore the needed normalization factor is calculated out of the expression data of co-amplified genes that are stable expressed in the certain sample material, the so-called reference genes. In this study, we demonstrate the important process of validating potential reference genes using a non-model species. As there are almost no sequences known of the Pallid Atlantic Forest Rat (Delomys sublineatus), a rodent used as indicator species in conservation studies of the endangered Brazilian rainforest, suitable primer sets are more problematic to find than in model species. Out of nine tested primer sets designed for the fully sequenced Mus musculus, five could be used for the establishment of a proper running SYBR-Green assay and validation of their constant expression. qRT-PCR results of 12 cDNAs of Delomys livers were analyzed with three different validation software programs: BestKeeper, NormFinder and geNorm. Our approach showed that out of the five (Sdha, Canx, Pgk1, Actb and Actg1) potential reference genes, the first four should be used for accurate normalization in further relative quantification analyses. Transferring data from close-by model organisms makes high sensitive real-time RT-PCR applicable even to free-ranging non-model organisms. Our approach might be suitable for other non-model organisms.


Assuntos
Genes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sigmodontinae/genética , Animais , Benzotiazóis , Brasil , Conservação dos Recursos Naturais , DNA Complementar/genética , Diaminas , Espécies em Perigo de Extinção , Perfilação da Expressão Gênica , Camundongos , Compostos Orgânicos/química , Quinolinas , RNA Mensageiro/genética , Padrões de Referência , Árvores
17.
Biochem Cell Biol ; 86(5): 380-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18923539

RESUMO

It is controversial whether DNA methylation plays a functional role in Drosophila. We have studied testis DNA of Drosophila melanogaster Meigen, 1830 with antisera against 5-methylcytosine (5mC) and found no evidence for the presence of significant amounts of 5mC. Reactions occur only with 1 of 3 5mC antisera, but they are restricted to nuclear regions without detectable amounts of DNA. The antisera apparently cross-react with other nuclear components. If the murine de novo DNA methyltransferases, DNMT3A and DNMT3B, are expressed under the control of the spermatocyte-specific beta2-tubulin promoter in testes, DNA methylation is not increased and no effects on the fertility of the fly are seen. DNA methylation has, therefore, no functional relevance in the male germ line of Drosophila.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Isoenzimas/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Isoenzimas/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...